Answer:
Option D
Explanation:
Given ,
$|\frac{z+3i}{3z+i}|$ <1
$|\frac{x+(y+3)i}{3(x+iy)+i}| <1$ [Let z=x+iy]
| x+(y+3)i| < | 3x+(3y+1)i|
$\Rightarrow$ $x^{2} +(y+3)^{2} < 9 x^{2}+(3y+1)^{2}$
$\Rightarrow$ $x^{2}+y^{2}+6y+9 < 9 x^{2}+9 y^{2}+6y+1$
$\Rightarrow$ $8x^{2}+8 y^{2}-8 >0$
$\Rightarrow$ $x^{2}+y^{2}-1 >0$
$\frac{k-1}{k}, \frac{k-2}{k}$ lie on locus of z
$\therefore$ $\frac{(k-1)^{2}}{k^{2}}+\frac{(k-2)^{2}}{k^{2}}-1 >0$
$\Rightarrow$ $k^{2}-2k+1+k^{2}-4k+4-k^{2} >0$
$\Rightarrow$ $k^{2}-6k+5 >0 \Rightarrow (k-5)(k-1) > 0$
$\Rightarrow$ k ε $(-\infty ,1) \cup (5, \infty)$